Semiconjugacy of Quasiperiodic Flows and Finite Index Subgroups of Multiplier Groups

نویسنده

  • Lennard F. Bakker
چکیده

It will be shown that if φ is a quasiperiodic flow on the n-torus that is algebraic, if ψ is a flow on the n-torus that is smoothly conjugate to a flow generated by a constant vector field, and if φ is smoothly semiconjugate to ψ, then ψ is a quasiperiodic flow that is algebraic, and the multiplier group of ψ is a finite index subgroup of the multiplier group of φ. This will partially establish a conjecture that asserts that a quasiperiodic flow on the n-torus is algebraic if and only if its multiplier group is a finite index subgroup of the group of units of the ring of integers in a real algebraic number field of degree n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Multiplier Group of a Quasiperiodic Flow

As an absolute invariant of smooth conjugacy, the multiplier group described the types of space-time symmetries that the flow has, and for a quasiperiodic flow on the n-torus, is the determining factor of the structure of its generalized symmetry group. It is conjectured that a quasiperiodic flow is F -algebraic if and only if its multiplier group is a finite index subgroup of the group of unit...

متن کامل

Quasiperiodic Flows and Algebraic Number Fields

We classify a quasiperiodic flow as either algebraic or transcendental. For an algebraic quasiperiodic flow φ on the n-torus, Tn, we prove that an absolute invariant of the smooth conjugacy class of φ, known as the multiplier group, is a subgroup of the group of units of the ring of integers in a real algebraic number field F of degree n over Q. We also prove that for any real algebraic number ...

متن کامل

On a conjecture of a bound for the exponent of the Schur multiplier of a finite $p$-group

Let $G$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(G)$ and let $m=lfloorlog_pk floor$. We show that $exp(M^{(c)}(G))$ divides $exp(G)p^{m(k-1)}$, for all $cgeq1$, where $M^{(c)}(G)$ denotes the c-nilpotent multiplier of $G$. This implies that $exp( M(G))$ divides $exp(G)$, for all finite $p$-groups of class at most $p-1$. Moreover, we show that our result is an improvement...

متن کامل

Some combinatorial aspects of finite Hamiltonian groups

In this paper we provide explicit formulas for the number of elements/subgroups/cyclic subgroups of a given order and for the total number of subgroups/cyclic subgroups in a finite Hamiltonian group. The coverings with three proper subgroups and the principal series of such a group are also counted. Finally, we give a complete description of the lattice of characteristic subgroups of a finite H...

متن کامل

Classifying fuzzy normal subgroups of finite groups

In this paper a first step in classifying the fuzzy normalsubgroups of a finite group is made. Explicit formulas for thenumber of distinct fuzzy normal subgroups are obtained in theparticular cases of symmetric groups and dihedral groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008